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Fig. 1 Thrust subsystem weight vs mission reliability.

Conclusions
The Monte Carlo simulations for the Encke Comet ren-

dezvous mission have demonstrated the versatility of the
Monte Carlo method for performing tradeoff studies. A great
number of factors, usually too complicated to include, were
used in the studies. Moreover, sensitivity studies indicated
that most of the factors described above were pertinent to the
results and so could not safely have been ignored. A general
reliability simulation program is a very useful tool for
analyzing competing designs from a reliability viewpoint.
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pie. But the point is that quite complicated definitions of suc-
cess can be specified for a simulation. This is important
because the definition of success has a very large impact on
mission reliability and reliability tradeoff studies.

In the simulation, the mission was started with the nominal
case, and as failures appeared the mission would continue as
long as the degraded case could be performed. If the degraded
case was achieved in the simulation, this was considered a
mission success. The mission reliability (mission probability
of success) was then obtained by taking the ratio of mission
successes to the total number of missions simulated.

The actual performance of the simulation proceeded as
follows. Failure times were generated for each component,
based on the previously described failure distributions. Then,
at the start of the simulation, the appropriate elements
(thruster and power processors) were chosen and designated
to be "active," so that operating time would be accumulated
on these elements. The simulation then proceeded to the next
"event," which would either be a failure or a phase change,
(that is, a new scheduled thrusting requirement). For either
event, new thrusters and processors would be selected and
switch availability would be checked. In the event of failures,
the scheduled "active" elements would not be available. In
such cases, alternates were chosen, and switching and sym-
metry checked, until a viable configuration was found. In
selecting "active" thrusters for a particular phase, the
algorithms generally chose those with least accumulated active
time to "even out" the operating times and to help prevent
wearout. This procedure was then repeated until either the
mission was complete, or until too many failures had occurred
to continue the mission.

The other important factor in any reliability tradeoff study
is weight. Figure 1 shows a means of presenting results that
illustrates the dependence of reliability on weight. The solid
line can be considered an "optimum" line in that con-
figurations off this line are both heavier and less reliable.

Introduction

MODEL reduction by continued fraction is a very
powerful and popular tool if it is used correctly.$ In the

original papers of Chen and Shieh, it has been pointed out
that the system must be low pass in nature.u But in the limit-
cycle analysis of a high order nonlinear rocket control system,
one can not make sure whether the system is suitable for
model reduction, although a Bode plot may help. It is the
main purpose of this work to present such an application.

System Analysis

The block diagram of a flexible rocket control system is
shown in Fig. 1. The linear blocks are3

7Fstr. = [0.686(5+53) (5-53) (52 -152.25 + 14500)

x (S2 + 153.85 + 14500) ] / [ ( S 2 +5 + 605) (S2 + 45.55 + 2660)

x(52 + 2.515+3900) (52 + 3.995 + 22980)]

G5 (5) =2750/(52 + 42.25 + 2750)

G r(S) -7.217(5+1.6) (5-1.48)

= (S2 + 705 + 400Q)(52 + 225+12800)
xf ~~ (52 + 305 + 5810)(52 +305+12800)

(1)

(2)

(3)

(4)
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Fig. 1 Block diagram of a missile control system.

Using the method of model reduction, the reduced transfer
functions of the structure block [Eq. (1)] can be obtained

TF< =
-0.0244(52-128.95 + 4144.4) (52 + 81.55+1704.6)
(5 + 41.3) (52 +25.45+ 2447.8)(52 + 0.975 + 605.9)

(5)

TF4 =4str.

TF< =

-0.015(5-99.8)(52-6.355-2459.5)
(52 +0.915 +608.4)(52 +22.75+ 21.60.6)

0.059(5 + 29.5) (5-37.2)
(5 + 42.4) (52 +1.595 + 539.8)

TF2 -0.0184(5-63.6)/(52 + 1.575 + 417.7)

(6)

(7)

(8)

The structure loop of the considered system (without reduc-
tion) has been analyzed in Ref. 4 in which the frequency and
amplitude of a limit cycle have been found. Here the system
with different order of structure transfer functions is
simulated on a digital computer. The obtained amplitudes and
frequencies of limit cycles are tabulated in Table 1, where //
and 72 are the amplitudes of the input sinusoids to the
nonlinearities Nj and 7V2, respectively, and the asterisk
represents the magnitude of the fundamental component of a
limit cycle.

In Table 1, the simulated results of the original system
(without reduction) have been checked with those obtained in
Ref. 4. But it is evident that the second and third order models
cannot be used for limit-cycle analysis since the errors are too
large.

Now consider the overall system (with the structure loop
and the rigid-body loop). In Fig. 1, assume that a and /5 are
two adjustable parameters, and Gdl and Gd2 are the
describing functions of the nonlinearities Nj and N2, respec-
tively, then the characteristic equation of the system is

( S + P ) A ( S ) +B(S) + Gd]Gd2+2GdlGd2C(S)=0 (9)

where

°'°5 0.05

0. 025 0. 025 0.7 [7-(0.025/7,
7T/,

(10)

Table 1 Limit-cycle values

Order of
T^str.

original
5th
3rd
2nd

Frequency
(rad/sec)

48.2
48.6
14.6

. 13.7

Amplitudes
. 7/

1.68
1.65
1.02
1.04*

I2

0.69
0.62
0.24*
0.31*

(1-

13 13

B(S) = X) biS*, C(S) = £} CfS1

i=0 i=0

(11)

(12)

and

*o
aI
a2
a3
a4
a5
a6
a?
a8
a9
aw
au
a n
a 13
a 14
a 15

= -7.13881147E29§ a}6
= -2.00416664^28 al7
= 3.00609734E29 a18
= 2.375332070^28 b0
= 1. 56918609^27 b.
= 7. 4 1994753^25 b2
= 2. 58 154582E24 b3
= 7. 4393 1665E22 b4
= 1. 64826083^21 b5
= 3.1995779^19 b6
= 4.84443778^17 b7
= 6.63694244^15 b8
= 6.9035 1694£1 3 b9
= 6.71567502^11 bw
= 4.60433051^09 bn
= 3.10024268^08 bl2

b13 = 3.04961875£09
c0 = 7.26453543£32
Cj = 2.70322764E32
c2 =1.1 6429355^31
c3 = 8.1 6488 122£29
c4 =2. 397208 15£28
c5 =1. 29484 173£26
c6 =1.30851682^25
c7 =2.37865654^23
c8 =2.67707162^21
c9 =3.19247876^19
c]0 =2.02308369^17
cn =1.73862741^15
cn = 4.7437 1307^1 2
c,3 =3.20521153^10

1.27 18878 1^05
5.1 8320000^02
1.00000000£00
6.55097808^29
1.97830887^29

-2.84112521£'29
-9.77738076^28
-1.79224 149^27
-1.56879222^24

4.47033368^23
9.74995237^21
6.68762499^19
9.27228544^17
4.12985263^15
6.57493654^13
2.94959125£'ll

Substituting S =jco into Eq. (9) and introducing the relation

Ij=I2 (13)

into Eq. (10), the real part and the imaginary part of Eq. (9)
can be written as

(14)

(15)

Solving these two equations for OL and /3 , one has

a=a(/2 ,o>) (16)

/3 = j8(/2,co) (17)

which can be used to plot the loci of constant amplitude (/)
and constant frequency (co) in a parameter-plane as shown in
Fig.2.5

Assume a = 0.3 and /3 = 25, then a point (Q,) in Fig. 2 is
defined, which indicates that the system has a limit cycle with
amplitude and frequency equal to 1.03 and 16.2, respectively.

In the computer simulation, the system is first treated as
that in Fig. 1, and then the structure transfer function is
replaced by its low-order models. The results are given in
Table 2.

§The numbers following E are the exponents to the base 10.
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Fig. 2 Limit-cycle loci of a rocket control system.

Table 2 Limit-cycle values

Order of
structure

original
5th
4th
3rd
2nd

Frequency
(rad/sec)

15.7
15.68
17.4
15.75
15.65

Amplitudes
//

1.34
1.25
1.32
1.33
1.26

h

1.04
0.97
0.54
1.05
0.97

Table 3 Limit-cycle values

Order of
TFm

original
5th
3rd
2nd

Frequency
(rad/sec)

64
40
46.6
12.55

Amplitudes
'/ h
1.20 1.32
1.62 1.001
1.605 0.318
1.19* 0.32*

Table 4 Limit-cycle values

Order of
TFm

original
5th
4th
3rd
2nd

Frequency
(rad/sec) 1

64
13.55
14.3
13.7
13.2

Amplitudes
r/ h

.2 1.32

.31 1.67
1.24 1.04
.36 1.37

1.39 1.47

It can be seen that the structure transfer function can be
replaced by its lower-order models without producing ap-
preciable errors on limit cycles.

Control System with Low Damping Ratio
From Ref. 3, the original transfer function of the structure

filter is
(S2 + 12S + 5810)(S2 + 22S+ 12800)G s f ( S ) =

(S2 + 135+ 3520)(S2 + 20.85 + 21000)
(18)

With this structure filter, the damping ratio of the structure
loop is very low.4 Using the same method as in the previous
section, the simulated results for the structure loop are given
in Table 3. The asterisk again represents the magnitude of the
fundamental component of a limit cycle. For the overall
system (with motor-linkage gain equal to 0.3), the simulated
results are given in Table 4.

As the gain of the motor-linkage was changed to 0.1, a limit
cycle was found at w= 15 and I2 =4.34. This result has been
checked by computer simulations with both the original
model and the reduced models. From these results, it can be
seen that the analyses by use of the low-order models give
correct results only if the limit-cycle frequency is low and the
system damping is large.

Conclusions
For limit-cycle analysis of a nonlinear rocket control

system, it has been shown that the reduced models can give
good approximation to the original system only if the
frequency of the limit cycle is low and the damping of the
system is large. Since the frequency of a limit cycle can be
found only after the analysis is completed, it is, therefore, ad-
visable to use the original transfer functions instead of the
reduced ones for limit-cycle analysis of the nonlinear rocket
control system.
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a
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Fo
h
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K
m
r
R
Sk
T(r,t)
t
x

Nomenclature
= thermal diffusivity coefficient
= Biot criteria
= heat capacity
= Fourier number
= heat transfer coefficient
= enthalpy rate
^Bessel function of first kind of order k on
argument x.

- thermal conductivity coefficient
^ transpiration or sublimation rate
^ radial coordinate
= Radius of the cylinder
= Stark number
= temperature distribution
= time variable
= dimensionless radial coordinate
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