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Fig.1 Thrust subsystem weight vs mission reliability.

ple. But the point is that quite complicated definitions of suc-
cess can be specified for a simulation. This is important
because the definition of success has a very large impact on
mission reliability and reliability tradeoff studies.

In the simulation, the mission was started with the nominal
case, and as failures appeared the mission would continue as
long as the degraded case could be performed. If the degraded
case was achieved in the simulation, this was considered a
mission success. The mission reliability (mission probability
of success) was then obtained by taking the ratio of mission
successes to the total number of missions simulated.

The actual performance of the simulation proceeded as
follows. Failure times were generated for each component,
based on the previously described failure distributions. Then,
at the start of the simulation, the appropriate elements
(thruster and power processors) were chosen and designated
to be ‘“‘active,” so that operating time would be accumulated
on these elements. The simulation then proceeded to the next
“‘event,”” which would either be a failure or a phase change,
(that is, a new scheduled thrusting requirement). For either
event, new thrusters and processors would be selected and
switch availability would be checked. In the event of failures,
the scheduled ‘‘active’’ elements would not be available. In
such cases, alternates were chosen, and switching and sym-
metry checked, until a viable configuration was found. In
selecting ‘‘active’’ thrusters for a particular phase, the
algorithms generally chose those with least accumulated active
time to ‘‘even out’’ the operating times and to help prevent
wearout. This procedure was then repeated until either the
mission was complete, or until too many failures had occurred
to continue the mission.

The other important factor in any reliability tradeoff study
is weight. Figure 1 shows a means of presenting results that
illustrates the dependence of reliability on weight. The solid
line can be considered an ‘‘optimum’’ line in that con-
figurations off this line are both heavier and less reliable.
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Conclusions

The Monte Carlo simulations for the Encke Comet ren-
dezvous mission have demonstrated the versatility of the
Monte Carlo method for performing tradeoff studies. A great
number of factors, usually too complicated to include, were
used in the studies. Moreover, sensitivity studies indicated
that most of the factors described above were pertinent to the
results and so could not safely have been ignored. A general
reliability simulation program is a very useful tool for
analyzing competing designs from a reliability viewpoint.
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Introduction

ODEL reduction by continued fraction is a very

powerful and popular tool if it is used correctly.f In the
original papers of Chen and Shieh, it has been pointed out
that the system must be low pass in nature.'? But in the limit-
cycle analysis of a high order nonlinear rocket control system,
one can not make sure whether the system is suitable for
model reduction, although a Bode plot may help. It is the
main purpose of this work to present such an application.

System Analysis

The block diagram of a flexible rocket control system is
shown in Fig. 1. The linear blocks are?

TF,, =[0.686(S+53)(S—53)(S?—-152.2S+14500)

X (82 +153.85+14500) 1/[ (S? +S+605) (S? +45.55+2660)

X (82 +2.515+3900) (57 +3.99S+ 22980) ] )
G, (S) =2750/(S? +42.25+2750) 2)
G,.(S)=7.21/(S+1.6) (§~1.48) 3)

(S? +70S +4000)(S? + 225 + 12800)

G (S) =
r(8) (57 +30S + 5810)(S2 + 305 + 12800)

“4)
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Fig. 1 Block diagram of a missile control system.

Using the method of model reduction, the reduced transfer
functions of the structure block [Eq. (1)] can be obtained
as'?

_ —0.0244 (5% —128.95+4144.4) (5° + 81.5S+ 1704.6)
St (S+41.3) (57 4 25.45 + 2447.8)(52 + 0.978 +605.9)

(%)

TE, —0.015(S—99.8)(S° —6.355—2459.5) ©)
T (82 40.915+608.4)(S? +22.7S + 21.60.6)

0. 29.5) (S—37.2
_— 059(S+29.5) ( ) )
str. (S+42.4) (52 + 1.595+539.8)

TF,,  =0.0184(S—63.6)/(S” +1.57S+417.7) ®)

The structure loop of the considered system (without reduc-
tion) has been analyzed in Ref. 4 in which the frequency and
amplitude of a limit cycle have been found. Here the system
with different order of structure transfer functions is
simulated on a digital computer. The obtained amplitudes and
frequencies of limit cycles are tabulated in Table 1, where [,
and I, are the amplitudes of the input sinusoids to the
nonlinearities N, and N,, respectively, and the asterisk
represents the magnitude of the fundamental component of a
limit cycle.

In Table 1, the simulated results of the original system
(without reduction) have been checked with those obtained in
Ref. 4. But it is evident that the second and third order models
cannot be used for limit-cycle analysis since the errors are too
large.

Now consider the overall system (with the structure loop
and the rigid-body loop). In Fig. 1, assume that « and 3 are
two adjustable parameters, and G, and G, are the
describing functions of the nonlinearities N; and N,, respec-
tively, then the characteristic equation of the system is

where

1 0.05 0.05

Gu=— | = +sin' (I— y+2(1- )
T 2 i i
0.025 (I 0.025 )] % 0.1[1—-(0.025/1,)1]
I, 7, J o,
(10)
Table 1 Limit-cycle values

Order of Frequency Amplitudes
TF (rad/sec) o 1
original 48.2 1.68 0.69
Sth 48.6 1.65 0.62
3rd 14.6 1.02 0.24*
2nd .13.7 1.04* 0.31*
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4 0.01 _
G, = - A A(S) = Sl
2= U= —F ) (S) Z}oa (11)
13 13
B(S)= ), bS, C(S)= Y, ¢, (12)
i=0 i=0
and
ay  =—7.13881147E29§ ais = 1.27188781E05
a,  =—2.00416664E28 a;; = 5.18320000E02
a; = 3.00609734E29 a = 1.00000000E00
a; = 2.375332070E28 by = 6.55097808E29
a, = 1.56918609E27 b, = 1.97830887E29
a; = 7.41994753E25 b,  =-—2.84112521E29
as = 2.58154582E24 by  =—9.77738076E28
a; = 7.43931665E22 b,  =—1.79224149E27
a; = 1.64826083E21 by  =—1.56879222E24
ag = 3.1995779E19 by = 4.47033368E23
a, = 4.84443778E17 b, = 9.74995237E21
a, = 6.63694244E15 by = 6.68762499E19
a; = 6.90351694E13 by = 9.27228544E17
a; = 6.71567502E11 by = 4.12985263E15
a;;, = 4.60433051E09 by = 6.57493654E13
a;s = 3.10024268E08 b, = 2.94959125E11

by =3.04961875E09

co  =7.26453543E32
¢, =2.70322764E32
¢,  =1.16429355E31
¢;  =8.16488122E29
¢, =2.39720815E28
cs  =7.29484173E26
¢ =1.30851682E25
¢,  =2.37865654E23
cs  =2.6T707162E21
¢y =3.19247876E19
cro  =2.02308369E17
¢ =L1.73862741E15
¢,  =4.74371307E12
ci;  =3.20521153E10

Substituting S =jw into Eq. (9) and introducing the relation
I,=1,| 2750/ [jw)? +42.2jw+2750] (13)

into Eq. (10), the real part and the imaginary part of Eq. (9)
can be written as

Frla,Bisw)=0 (14)
Fila,Blw)=0 (15)
Solving these two equations for « and 3, one has
a=a(l; ) (16)
B=B8(I;w) 17

which can be used to plot the loci of constant amplitude (/)
and constant frequency (w) in a parameter-plane as shown in
Fig. 2.}

Assume a=0.3 and 3=25, then a point (Q,) in Fig. 2 is
defined, which indicates that the system has a limit cycle with
amplitude and frequency equal to 1.03 and 16.2, respectively.

In the computer simulation, the system is first treated as
that in Fig. 1, and then the structure transfer function is
replaced by its low-order models. The results are given in
Table 2.

§The numbers following F are the exponents to the base 10.
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Fig.2 Limit-cycle loci of a rocket control system.

Table 2 Limit-cycle values

Order of Frequency Amplitudes
structure (rad/sec) 1, I,
original 15.7 1.34 1.04
Sth 15.68 1.25 0.97
4th 17.4 1.32 0.54
3rd 15.75 1.33 1.05
2nd 15.65 1.26 0.97
Table 3 Limit-cycle values
Order of Frequency Amplitudes
TF, (rad/sec) I, I,
original 64 1.20 1.32
Sth 40 1.62 1.001
3rd 46.6 1.605 0.318
2nd 12.55 1.19* 0.32*
Table4 Limit-cycle values
Order of Frequency Amplitudes
TF, (rad/sec) 1, 1,
original 64 1.2 1.32
Sth 13.55 1.31 1.67
4th 14.3 1.24 1.04
3rd 13.7 1.36 1.37
2nd 13.2 1.39

It can be seen that the structure transfer function can be
replaced by its lower-order models without producing ap-
preciable errors on limit cycles.

Control System with Low Damping Ratio

From Ref. 3, the original transfer function of the structure
filter is

(S% +12S+ 5810)(S° + 225 + 12800)
(5% 4 135+ 3520)(S? + 20.8S + 21000)

Gy(S)= (18)

With this structure filter, the damping ratio of the structure
loop is very low.* Using the same method as in the previous
section, the simulated results for the structure loop are given
in Table 3. The asterisk again represents the magnitude of the
fundamental component of a limit cycle. For the overall
system (with motor-linkage gain equal to 0.3), the simulated
results are given in Table 4.
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As the gain of the motor-linkage was changed to 0.1, a limit
cycle was found at w=15 and I, =4.34. This result has been
checked by computer simulations with both the original
model and the reduced models. From these results, it can be
seen that the analyses by use of the low-order models give
correct results only if the limit-cycle frequency is low and the
system damping is large.

Conclusions

For limit-cycle analysis of a nonlinear rocket control
system, it has been shown that the reduced models can give
good approximation to the original system only if the
frequency of the limit cycle is low and the damping of the
system is large. Since the frequency of a limit cycle can be
found only after the analysis is completed, it is, therefore, ad-
visable to use the original transfer functions instead of the
reduced ones for limit-cycle analysis of the nonlinear rocket
control system.
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Temperature Distribution in a
Sublimation-Cooled Coated
Cylinder in Convective and
Radiative Environments
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Nomenclature
a =thermal diffusivity coefficient
Bi =Biot criteria
c =heat capacity
Fo =Fourier number
h =heat transfer coefficient
AH =enthalpy rate
Ji(x) =Bessel function of first kind of order k on
argument Xx.
K =thermal conductivity coefficient
it = transpiration or sublimation rate
r =radial coordinate
R =Radius of the cylinder
Sk =Stark number
T(r,1) =temperature distribution
t =time variable

X =dimensionless radial coordinate
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