

Fig. 1 Thrust subsystem weight vs mission reliability.

ple. But the point is that quite complicated definitions of success can be specified for a simulation. This is important because the definition of success has a very large impact on mission reliability and reliability tradeoff studies.

In the simulation, the mission was started with the nominal case, and as failures appeared the mission would continue as long as the degraded case could be performed. If the degraded case was achieved in the simulation, this was considered a mission success. The mission reliability (mission probability of success) was then obtained by taking the ratio of mission successes to the total number of missions simulated.

The actual performance of the simulation proceeded as follows. Failure times were generated for each component, based on the previously described failure distributions. Then, at the start of the simulation, the appropriate elements (thruster and power processors) were chosen and designated to be "active," so that operating time would be accumulated on these elements. The simulation then proceeded to the next "event," which would either be a failure or a phase change, (that is, a new scheduled thrusting requirement). For either event, new thrusters and processors would be selected and switch availability would be checked. In the event of failures, the scheduled "active" elements would not be available. In such cases, alternates were chosen, and switching and symmetry checked, until a viable configuration was found. In selecting "active" thrusters for a particular phase, the algorithms generally chose those with least accumulated active time to "even out" the operating times and to help prevent wearout. This procedure was then repeated until either the mission was complete, or until too many failures had occurred to continue the mission.

The other important factor in any reliability tradeoff study is weight. Figure 1 shows a means of presenting results that illustrates the dependence of reliability on weight. The solid line can be considered an "optimum" line in that configurations off this line are both heavier and less reliable.

Conclusions

The Monte Carlo simulations for the Encke Comet rendezvous mission have demonstrated the versatility of the Monte Carlo method for performing tradeoff studies. A great number of factors, usually too complicated to include, were used in the studies. Moreover, sensitivity studies indicated that most of the factors described above were pertinent to the results and so could not safely have been ignored. A general reliability simulation program is a very useful tool for analyzing competing designs from a reliability viewpoint.

Reference

¹Costogue, E. N. and Chelson, P. O., "A Reliability Tradeoff Study of Interconnecting Power Processors to Mercury Ion Thrusters," AIAA Paper 75-435, New Orleans, La., 1975.

Model Reduction of a Nonlinear Rocket Control System

M. H. Liu*

Chung Cheng Institute of Technology,
Taiwan, Republic of China

and

K. W. Han†

Chung Shan Institute of Science and Technology,
Taiwan, Republic of China

Introduction

MODEL reduction by continued fraction is a very powerful and popular tool if it is used correctly.‡ In the original papers of Chen and Shieh, it has been pointed out that the system must be low pass in nature.^{1,2} But in the limit-cycle analysis of a high order nonlinear rocket control system, one can not make sure whether the system is suitable for model reduction, although a Bode plot may help. It is the main purpose of this work to present such an application.

System Analysis

The block diagram of a flexible rocket control system is shown in Fig. 1. The linear blocks are³

$$TF_{\text{str.}} = [0.686(S+53)(S-53)(S^2 - 152.2S + 14500) \times (S^2 + 153.8S + 14500)] / [(S^2 + S + 605)(S^2 + 45.5S + 2660) \times (S^2 + 2.51S + 3900)(S^2 + 3.99S + 22980)] \quad (1)$$

$$G_s(S) = 2750 / (S^2 + 42.2S + 2750) \quad (2)$$

$$G_r(S) = 7.21 / (S + 1.6)(S - 1.48) \quad (3)$$

$$G_{sf}(S) = \frac{(S^2 + 70S + 4000)(S^2 + 22S + 12800)}{(S^2 + 30S + 5810)(S^2 + 30S + 12800)} \quad (4)$$

Received April 24, 1975; revision received September 3, 1975.

Index categories: LV/M Dynamics and Control; Missile Systems.

*Graduate Student.

†Professor and Head of Guidance and Control Section.

‡One of the reviewers of this paper has pointed out that the method of continued fraction may sometimes reduce a stable system to an unstable one. This is a fact but will not be discussed here for lack of space. The authors are grateful to all the reviewers for their comments.

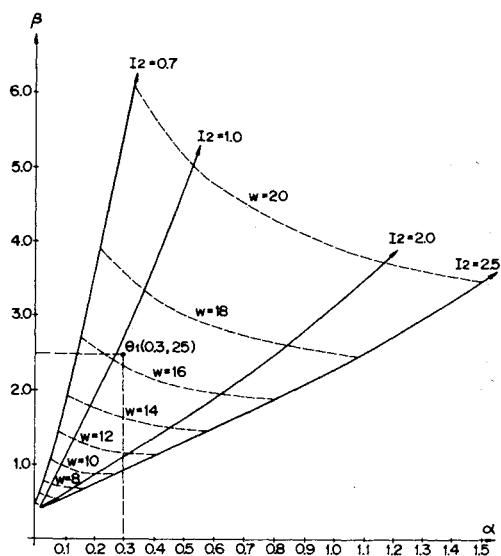


Fig. 2 Limit-cycle loci of a rocket control system.

Table 2 Limit-cycle values

Order of structure	Frequency (rad/sec)	Amplitudes	
		I_1	I_2
original	15.7	1.34	1.04
5th	15.68	1.25	0.97
4th	17.4	1.32	0.54
3rd	15.75	1.33	1.05
2nd	15.65	1.26	0.97

Table 3 Limit-cycle values

Order of TF_{str}	Frequency (rad/sec)	Amplitudes	
		I_1	I_2
original	64	1.20	1.32
5th	40	1.62	1.001
3rd	46.6	1.605	0.318
2nd	12.55	1.19*	0.32*

Table 4 Limit-cycle values

Order of TF_{str}	Frequency (rad/sec)	Amplitudes	
		I_1	I_2
original	64	1.2	1.32
5th	13.55	1.31	1.67
4th	14.3	1.24	1.04
3rd	13.7	1.36	1.37
2nd	13.2	1.39	1.47

It can be seen that the structure transfer function can be replaced by its lower-order models without producing appreciable errors on limit cycles.

Control System with Low Damping Ratio

From Ref. 3, the original transfer function of the structure filter is

$$G_{sf}(S) = \frac{(S^2 + 12S + 5810)(S^2 + 22S + 12800)}{(S^2 + 13S + 3520)(S^2 + 20.8S + 21000)} \quad (18)$$

With this structure filter, the damping ratio of the structure loop is very low.⁴ Using the same method as in the previous section, the simulated results for the structure loop are given in Table 3. The asterisk again represents the magnitude of the fundamental component of a limit cycle. For the overall system (with motor-linkage gain equal to 0.3), the simulated results are given in Table 4.

As the gain of the motor-linkage was changed to 0.1, a limit cycle was found at $\omega = 15$ and $I_2 = 4.34$. This result has been checked by computer simulations with both the original model and the reduced models. From these results, it can be seen that the analyses by use of the low-order models give correct results only if the limit-cycle frequency is low and the system damping is large.

Conclusions

For limit-cycle analysis of a nonlinear rocket control system, it has been shown that the reduced models can give good approximation to the original system only if the frequency of the limit cycle is low and the damping of the system is large. Since the frequency of a limit cycle can be found only after the analysis is completed, it is, therefore, advisable to use the original transfer functions instead of the reduced ones for limit-cycle analysis of the nonlinear rocket control system.

References

- Chen, C.F. and Shieh, L.S., "A Novel Approach to Linear Model Simplification," JACC 1968, Michigan, pp. 454-461.
- Chen, C.F. and Shieh, L.S., "Continued Fraction Inversion by Routh's Algorithm," IEEE Transactions on Circuit Theory, Vol. CT-16, May, 1969, pp. 197-202.
- Blakelock, J.H., *Automatic Control of Aircraft and Missiles*, Wiley, New York, 1965.
- Chu, D. and Han, K.W., "Analysis of High-Order Nonlinear Rocket Control System," *Proceedings of the 10th International Symposium on Space Science and Technology*, Tokyo, Japan, 1973, pp. 1007-1020.
- Han, K.W. and Thaler, G.J., "Analysis of Control System with Complex Nonlinearity and Transport Lag," *Journal of the Franklin Institute*, Vol. 286, July 1966, pp. 76-89.

Temperature Distribution in a Sublimation-Cooled Coated Cylinder in Convective and Radiative Environments

K. N. Shukla*

Vikram Sarabhai Space Centre, Trivandrum, India

Nomenclature

a	= thermal diffusivity coefficient
Bi	= Biot criteria
c	= heat capacity
Fo	= Fourier number
h	= heat transfer coefficient
ΔH	= enthalpy rate
$J_k(x)$	= Bessel function of first kind of order k on argument x .
K	= thermal conductivity coefficient
\dot{m}	= transpiration or sublimation rate
r	= radial coordinate
R	= Radius of the cylinder
Sk	= Stark number
$T(r, t)$	= temperature distribution
t	= time variable
x	= dimensionless radial coordinate

Received June 17, 1975; revision received August 14, 1975. The author is grateful to K. Surendran for his valuable suggestions and S. F. Hussain for rendering his services for computation work throughout this paper. The encouragement given by C. A. Reddy is gratefully acknowledged.

Index categories: L/V/M Aerodynamic Heating; Heat Conduction.

*Scientist, Physics and Applied Mathematics Division.